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Abstract: The enhancement of the thermal properties of insulating oils has positively reflected
on the performance of the electrical equipment that contains these oils. Nanomaterial science
plays an influential role in enhancing the different properties of liquids, especially insulating oils.
Although a minimum oil circuit breaker (MOCB) is one of the oldest circuit breakers in the electrical
network, improving the insulating oil properties develops its performance to overcome some of its
troubles. In this paper, 66 kV MOCB is modeled by COMSOL Multiphysics software. The internal
temperature and the internally generated heat energy inside the MOCB during the making process of
its contacts are simulated at different positions of the movable contact. This simulation is introduced
for different modified insulating oils (mineral oil and synthetic ester oil) with different types of
nanoparticles at different concentrations (0.0, 0.0025, 0.005, and 0.01 wt%). From the obtained results, it
is noticed that the thermal stress on the MOCB can be reduced by the use of high thermal conductivity
insulating oils. Nano/insulating oils decrease internal temperature and generate heat energy inside
the MOCB by about 17.5%. The corresponding physical mechanisms are clarified considering the
thermophoresis effect.

Keywords: insulating oil; nanofluids; minimum oil circuit breaker; thermal properties

1. Introduction

The minimum oil circuit breaker (MOCB) is one of the oldest circuit breakers. In
this type of circuit breaker, the fixed and movable contacts are immersed in insulating
oil. This oil has been used as an insulating, cooling, and arc-quenching medium. Figure 1
presents an internal view of one pole of the minimum oil circuit breaker. Due to the thermal
and dielectric deterioration of this oil, alternative costly circuit breakers are used, such as
sulfur hexafluoride (SF6) and vacuum circuit breakers, instead of oil circuit breakers that
require repeated maintenance processes. If the thermal and dielectric properties of the oil
used in MOCB are improved, its maintenance requirements will be less, and its lifetime
will be longer, postponing its replacement with a new one. Regarding thermal properties,
due to the high-temperature arc produced between MOCB contacts, the enhancement of
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the insulating oil thermal conductivity positively affects the performance of the MOCB
by mitigating the thermal stress on its components. A high-temperature arc is produced
due to the opening or closing of the circuit breaker contacts regardless of the type of
arc quenching medium. Yangze et al. analyzed the arc spectrum between the contacts
of the SF6 circuit breaker and presented that the temperature at the arc’s center reached
25,000 K [1]. In [2], the temperature profile for the produced arc due to the switching-off
of the SF6 circuit breaker ranged between 10,000 K and 16,000 K. Jazini et al. studied the
thermal performance of the contacts in circuit breakers and presented that the maximum
temperature along the arc between the circuit breaker contacts is 40,273 K [3]. This high
temperature causes an erosion of the contacts and shortens the lifetime of the circuit breaker
as a whole.
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Researchers recently studied the development of nanoparticle dispersion into the base
insulating oil, known as nanofluids, to improve the dielectric and thermal properties of base
oil [4,5]. For dielectric properties, using nanofluids enhanced breakdown strength [5,6],
dielectric dissipation factor [5,7], partial discharge resistance [8], and creepage discharge [9].
For thermal properties, both the thermal conductivity and the heat transfer coefficient
have been investigated. In [10], thermal conductivity improved by about 20% and 25%
when a 0.05% volume fraction of multi-walled carbon nanotubes and spherical diamond
nanoparticles were dispersed into the base oil. Moreover, multi-walled carbon nanotubes
could improve the convective heat transfer coefficient under natural airflow up to about
26% when the input power was set at 120 W and up to 24% when the input power was
set at 50 W [11]. In the same research, the convective heat transfer coefficient was im-
proved under forced air flows up to about 17% and 25% for an input power of 120 W and
50 W, respectively. Although carbon nanotubes and diamond nanoparticles proved their
effectiveness regarding thermal properties, they decreased the dielectric strength of the
prepared nanofluids [10,11] or even caused a weak enhancement [12]. As a substitution,
nanostructures of graphene or graphene oxide were used due to their superiority in en-
hancing both the thermal and dielectric properties of the prepared nanofluids. In [13,14],
graphene oxide could improve the dielectric strength of the prepared nanofluids without
monitoring thermal properties, while, in [15], graphene oxide could improve both the
dielectric strength and thermal conductivity of prepared nanofluids. In [16,17], simulta-
neous enhancements in thermal conductivity and dielectric strength were obtained using
graphene with insulating oil. In [16], graphene was used with transformer oil, exhibiting
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a maximum enhancement in thermal conductivity of about 30% at 0.01% weight fraction
(0.01 wt%) and 328 K. At the same weight fraction, an enhancement in the dielectric strength
of about 17% was achieved. In [17], using graphene with cottonseed oil could enhance
the thermal conductivity by up to 18% at 0.01 wt% and 338 K and enhance the dielectric
strength by up to 41% at the same weight fraction. The longer sonication time resulted
in higher thermal conductivity due to possibly breaking up graphene nanosheet clusters.
Saman et al. reported that conventional mineral oil can be electrically improved by the
dispersing of plasma-treated alumina nanoparticles inside it. Where the increase in alumina
wt% up to 0.1% achieved an increase in breakdown strength to 58 kV, nevertheless, the 0.3%
weight percentage decreased the breakdown strength to 53 kV due to alumina nanoparticle
agglomeration. Regarding thermal conductivity, the weight percentage of 0.1% of alumina
has higher thermal conductivity than pure oil due to enhanced heat transferability [18]. In
addition, Wanatasanappan et al. [19] investigated the thermophysical properties (thermal
conductivity, density, and dynamic viscosity) of soybean oil, coconut oil, and palm oil-based
hybrid nanofluids bonded with Al2O3-TiO2 nanoparticles. The results denote that palm oil
mixed with nanofluids has superior thermophysical assets compared with the other two
types, with the highest thermal conductivity and lowest density and viscosity. Moreover,
Muzafar et al. [20] presented a study using three different nanomaterials (silica, alumina,
titania) with different concentrations inside transformer oil. The presented results prove
that alumina (Al2O3) has a higher breakdown strength of 32% at a concentration of 0.06 as
compared to other samples. Furthermore, the loading of alumina with wt% from 0.5% to 3%
enhances thermal conductivity at 35 ◦C from 0.135 W/m◦C to 0.15 W/m◦C, respectively.

Other types of nanoparticles could improve both thermal and dielectric properties of
transformer oil-based nanofluids, such as calcium copper titanium oxide (CaCu3Ti4O12) [21]
and barium titanate/TiO2 [22]. Regarding CaCu3Ti4O12 nanoparticles [21], they could en-
hance the thermal conductivity and AC breakdown strength of synthetic ester oil by about
10% and 42%. On the other hand, using barium titanate/TiO2 nanoparticles [22] enhanced
the heat transfer coefficient of prepared nanofluids by about 33% and their dielectric
strength by about 43%. Fernández et al. concluded that the loading of TiO2 and zinc oxide
(ZnO) nanoparticles into insulating vegetable ester oil with wt.% concentration up to 0.16%
achieved an enhancement of breakdown voltage of about 36% and 28% [23]. Furthermore,
in [24], the authors reviewed the dispersion of aluminum oxide (Al2O3) nanoparticles
into insulating oil with different concentrations, which causes thermal conductivity en-
hancement that is proportional to the concentration and temperature of nanoparticles,
as concluded in [25]. In addition, Šárpataky et al. summarized that the AC breakdown
voltage has been enhanced from 4% up to 75% based on the type of insulating oil, the size
of nanoparticles, and the nanoparticles’ concentrations [26]. Recently, Maher et al. mea-
sured the dielectric dissipation factor (DDF) after thermal and electrical faults on different
nanofluids in power transformers. The results showed that the addition of nanoparticles to
mineral oil decreased the DDF after the presence of thermal and electrical faults. Thus, the
presence of nanoparticles (such as SiO2, Al2O3, and TiO2) inside the mineral oil increases
its lifetime with better performance [27]. Abdali et al. showed that the insertion of 0.01%
weight percentage of diamond nanoparticles inside mineral oil can reduce the hotspot
temperature to 5.1 ◦C and enhance the coolant properties of the mineral oil [28]. Finally,
Ghoneim et al. introduced a new approach to transformer tap changer maintenance using
insulating oil-based nanoparticles [29].

From the abovementioned wide survey, most literature articles were conducted with
nanofluids in power system apparatuses, especially power transformers. Contrary to that,
the application of nanofluids with circuit breakers is very limited. Hence, in [30], oil-based
nanofluids were used to treat the carbonization occurring at the contact points of a molded
case circuit breaker, with a positive impact on the electrical properties of this circuit breaker.
Other studies by Dessouky et al. used nanofluid as a practical application for the internal
maintenance of miniature circuit breakers (MCB) and molded case circuit breakers (MCCB)
as obvious in [31,32], respectively. However, no articles have investigated a potential real
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application of such nanofluids in power system apparatuses, namely circuit breakers. This
study contains a new contribution to the industrial sector of circuit breaker manufacturer
that considers a new idea in applying nanofluids inside circuit breakers and that simulates
the temperature distribution and the generated heat energy during the making process of
the minimum oil circuit breaker. Furthermore, to the author’s experience and knowledge,
most researchers care about the application of nanofluids in power transformers and other
electrical applications except circuit breakers. There is no one who simulates the thermal
distribution and heat energy of nanofluids inside the minimum oil circuit breaker using a
numerical thermal model with detailed parameters.

To tackle the aforementioned issue, this paper is considered the first study that tests
the thermal performance of a real circuit breaker model filled with nanofluids. In addition,
this article introduces the impact of different modified insulating oils by different types and
concentrations of nanoparticles on the produced temperature and generated heat energy in
the MOCB during its making process. The making process means the transition of contacts
to convert the circuit breaker from the switch-off state to the switch-on position. MOCB
is modeled by COMSOL Multiphysics software V.5.5. Temperature profile and generated
heat energy in the insulating oils have been introduced at the different positions of the
movable contact inside the arc quenching house. The insulating oil samples used in this
simulation are mineral-oil-based nanofluids with different thermal conductivities as per the
considered samples discussed in the next sections. We studied their effect on the evaluated
parameters. The article’s contributions can be highlighted as follows:

• Proposing the use of nanofluids in MOCB as a real application by investigating
nanofluids’ impacts on their thermal performance.

• Developing a thermal model for MOCB using the finite element method with more
detailed parameters.

• Investigating the impact of nanoparticle’s types and concentrations on heat energy
generation and temperature distribution with clarifying the corresponding physical
mechanisms.

2. Considered Oil-Based Nanofluids

The enhancement of the thermal conductivity of insulating oils is highly required
for the different insulating, cooling, and arc quenching applications. As mentioned in the
previous section, the dispersion of certain types of nanoparticles into the base insulating
oil with different weight percentages (wt%) can achieve this enhancement of oil thermal
properties. In this paper, two types of insulating oils are selected (mineral oil and synthetic
ester oil). Furthermore, two types of nanomaterials are selected to investigate the mitiga-
tion of thermal stress from the MOCB due to the presence of these nanomaterials in the
insulating oils. These two nanomaterials are amorphous graphene nanosheets (N-GS) [16]
and CaCu3Ti4O12 (CCTO) nanoparticles [21]. The selection of these nanomaterials is meant
to achieve high thermal conductivity nanofluids, as introduced in [16,21].

In [16], the dispersion of 0.0025, 0.005, and 0.01 wt% of amorphous graphene nanosheets
into the base mineral oil enhanced its thermal conductivity by about 1.5%, 3.3%, and 10%,
respectively. While in [21], the dispersion of 0.0025, 0.005, and 0.01 wt% of CCTO nanopar-
ticles into the base synthetic ester oil enhanced its thermal conductivity by about 4.2%,
5.3%, and 6.5%, respectively. Figure 2 represents the thermal conductivities of the mineral
oil nanofluid samples (MONF) and synthetic ester oil nanofluid samples (EONF), with
standard unit (W·m−1·k−1), obtained from references [16,21].
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3. Thermal Modelling of MOCB

In this section, a thermal model of a 66 kV MOCB is simulated using COMSOL
Multiphysics software. The selected space dimension is 2D and the applied Multiphysics
mode is the coupled interface between the electric currents and the heat transfer in fluids
based on the finite element method. As introduced in the COMSOL Multiphysics software
reference manual, the stationary electric currents model can be presented as follows [33]:

J = σ E + Je (1)

where J means the current density, σ denotes the electrical conductivity (S/m), Je is an
externally produced current density (A/m2), and E means the electric field strength (V/m).

The continuity equation can be in the static form as:

∇J = -∇(σ ∇V − Je) = 0 (2)

where V is the electrical potential (V). The heating source due to the current source based
on current density and electrical potential can be written as [33]:

Q (j,V) = J·E (3)

The electric field strength can be expressed as:

E = −∇V (4)

Therefore,
Q = (σ ∇V − Je)·∇V (5)

In this model, the external current density, Je does not share in the losses because
there is no electric field associated with it. Accordingly, its value is set at 0 A/m2 [34]. The
dependent variable for the computation of this electric model is electrical potential (V),
whose value at the fixed contact is 66/

√
3 kV and, at the movable contact, is grounded.

The electric potential contact (fixed contact) implements an electric potential Vo as the
boundary condition V = Vo. The ground contact (movable contact) provides zero potential
nodes as the boundary condition V = 0. The porcelain enclosure of the MOCB is modeled
as electric insulation with boundary condition (n·J = 0) means that no electric current flows
into this boundary. On the other hand, the physical model of heat transfer in the fluid can
be summarized as heating source Q (w/m3) [34]:

ρ Cp ∂T/∂t + ρ Cp u·∇T − ∇·(kc ∇T) = Q, (6)
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where ρ depicts the fluid density (kg/m3), followed by Cp means the fluid heat capacity
at constant pressure (J/(kg·K)), u represents the fluid velocity field (m/s), kc means the
fluid thermal conductivity (W/(m·K)), and the dependent variable in this model is the
temperature T (K) that is initially set at room temperature of 300 K as a boundary condition.
The fluid inside MOCB in the making process is considered stationary. Thus, the heat trans-
fer in this model is dependent on the fluid heat conduction, not the fluid heat convection,
where the fluid heat conduction depends on the fluid thermal conductivity, but the fluid
heat convection depends on the fluid velocity that equals zero according to our assumption.
The second item in the model assumption is that the thermal conductivity is fixed during
the making process of MOCB due to the short time span of such a process.

In this study, the coupling between the electric currents model and the heat transfer
in fluids deals with the heating source term of Qe (W/m3) that is expressed in
Equations (3) and (7). Since the making process instant is short, the oil’s thermal con-
ductivity is considered a constant value at this instant.

ρ Cp ∂T/∂t − ∇·(kc ∇T) = Qe (7)

Equations (3) and (7) illustrate the parameters considered in the interfacing between
the electric current and the heat transfer in this model. The heating source of the model
depends upon the fluid parameters (ρ, Cp, and kc) as shown in Equation (7), and upon the
electric parameters (J and E), as shown in Equation (3).

As shown in Figure 1, the internal construction of one pole of MOCB is presented.
The high-voltage terminal is connected to the fixed contact, while the movable contact
opens or closes the high-voltage terminal with the system through a mechanical operating
mechanism. The model of a typical 66 kV MOCB is built using COMSOL Multiphysics
software based on the dimensions shown in Figure 3. This model is built according to
technical data (construction, dimensions, special parts, etc.) from relevant datasheets.
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This simulation not only introduces the temperature distribution inside the minimum
oil circuit breaker in the making process before arcing spread between its contacts but also
evaluates its internal energy. The internal energy U (J/kg) represents the entire energy of
an enclosed system that is related to the heat transfer between two different temperature
objects. The following equation shows that the internal energy inside MOCB depends upon
the oil heat capacity and the temperature difference between oil molecules.

U = Cp·∆T (8)
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Moreover, the electric potential between the contacts and current density will be
responsible for heat generation, as illustrated in Equation (3) above. In order to investigate
this problem with a stationary COMSOL Multiphysics study, a certain distance between
the arc quenching house and the movable contact was considered. The gap between the
arc quenching house and the movable contact at the completely open state of the modeled
circuit breaker is 200 mm. The simulation was created by a set of this distance at 75%, 50%,
and 25% of the completely open distance (i.e., at 150, 100, and 50 mm, respectively) as shown
in Figure 4. Hence, the limitation of the thermal model is that the MOCB thermal model is
simulated in 2D space dimension and stationery mode, in addition to the consideration of
a single-phase unit that is symmetrical for the simulation of the other two phases (means,
3-phase MOCB units). We use the phase voltage that is equal to the line voltage divided by√

3. Finally, the heat transfer in this model is based on fluid heat conduction, not fluid heat
convection.
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Figure 5a presents the model of MOCB after creation with the 2D space dimension on
the COMSOL Multiphysics software window. Figure 5b introduces the mesh presentation
of extra fine finite element size to solve the model equations to evaluate the temperature
distribution and internal heat energy inside MOCB. The gap between the arc quenching
house and the movable contact presented in Figure 5 is 200 mm (i.e., completely open state).
Note that the detailed thermal model parameters of MOCB and the datasheet parameters
of various oil types have been extracted from real experimental data.
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4. Results and Discussion

The simulation of a thermal model of one pole of a 66 kV MOCB is presented in this
section using COMSOL Multiphysics. The simulation is introduced when the MOCB is
filled by MONF/N-GS with different concentrations of N-GS. On the other hand, the simu-
lation is repeated when the MOCB is filled by EONF/CCTO with different concentrations
of CCTO. The simulation is processed for all nanofluid samples at different gap distances
between the arc quenching house and the movable contact (150 mm, 100 mm, and 50 mm).
The maximum temperature values inside the circuit breaker have been presented on the
top of the color distribution bar beside each sub-figure.

4.1. A 150 mm Gap Distance

Figure 6 shows the temperature distribution inside MOCB in the case of a 150 mm gap
distance between the arc quenching house and the movable contact with the insulating
medium of MONF/N-GS. From the obtained results, due to the increase in nanoparticle
concentrations of 0.0025%, 0.005%, and 0.01%, the thermal stress inside the MOCB decreases
from 52,300 K to 51,600 K, 50,700 k, and 48,000 K, respectively. Furthermore, as presented
in Figure 7, the internal heat energy decreases from 106 × 103 kJ/kg to 105 × 103 kJ/kg,
103 × 103 kJ/kg, and 97.3 × 103 kJ/kg with the increase in nanoparticle concentration by
0.0025%, 0.005%, and 0.01%, respectively.
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On the other hand, in the case of EONF/CCTO, the generated temperature around the
arc quenching house at 150 mm gap distance is decreased from 46,000 K to 44,400 K, 43,900 K,
and 43,500 K, respectively, with the increase in CCTO loading changed by 0.0025%, 0.005%,
and 0.01%, as presented in Figure 8. While the internal heat energy is decreased from
93.2 × 103 kJ/kg to 89.8 × 103 kJ/kg, 89 × 103 kJ/kg, and 88.1 × 103 kJ/kg, respectively, as
shown in Figure 9.

From the obtained results, as illustrated in Figures 10 and 11, the produced temperature
was reduced due to the better thermal conductivity of the insulating oil, and, also, the
generated heat energy inside MOCB decreased. About a 8.3% and 4.7% decrease in the
oil temperature was achieved at 0.01 wt% of N-GS and CCTO, respectively. On the other
hand, the internal heat energy is reduced by 8.2% and 5.5% at 0.01 wt% of N-GS and CCTO,
respectively.

4.2. A 100 mm Gap Distance

In this subsection, the simulation is introduced when the MOCB is filled by MONF/N-
GS and repeated when it is filled by EONF/CCTO at a 100 mm gap distance with different
concentrations of nano-additives. The maximum temperature values due to the making
process of MOCB contacts at 100 mm separation for different insulating oils are presented
in Figure 12. On the other hand, Figure 13 introduces the maximum internal heat energy
for all insulating oil samples.
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From the obtained results, as summarized in Table 1, the produced temperature is
reduced due to the better thermal conductivity of the insulating oil. In the case of MONF,
the larger the N-GS wt%, the lower the generated temperature inside the insulating oil. A
percentage decrease of about 8.5% in the oil temperature is achieved at 0.01 wt% of N-GS
compared with the base mineral insulating oil. On the other hand, In the case of EONF,
about 5.5% mitigation in the oil temperature inside the MOCB is provided at 0.01 wt% of
CCTO compared with the base ester insulating oil.

Regarding the internally generated heat energy, due to the increase in nanoparticles
loading ratio, the generated heat energy decreased. In the case of MONF, the maximum
generated heat energy is decreased at 0.01 wt% of N-GS by about 8.3% compared with the
base mineral insulating oil. While, in the case of EONF, the maximum generated heat energy
is decreased at 0.01 wt% of CCTO by about 5.7% compared with the base ester insulating
oil. Comparing the worst sample (base mineral oil) and the best sample (EONF/CCTO at
0.01 wt%), it is found that a decrease in internal temperature and generated heat energy
inside the MOCB was achieved by about 17%.
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Figure 10. Maximum temperature for different nanoparticle concentrations at 150 mm gap distance.

4.3. A 50 mm Gap Distance

As simulated in the cases of 150 mm and 100 mm gap distances between the arc
quenching house and the movable contact, the simulation is repeated at a 50 mm gap
distance. From the obtained results, as presented in Figures 14 and 15, the maximum
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produced temperature and maximum generated heat energy inside MOCB are reduced
due to the higher thermal conductivity of the insulating oil as obtained in the cases of
150 mm and 100 mm gap distances between the arc quenching house and the movable
contact. In this case of gap distance, the maximum temperature and maximum internal
heat are reduced by about 8.4% and 8%, respectively, for MONF/N-GS, and it was reduced
by about 5.5% and 5.8%, respectively, for MONF/CCTO at the nanoparticle’s concentration
(i.e., 0.01 wt%).
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Figure 11. Maximum internal heat energy for different nanoparticle concentrations at 150 mm gap
distance.
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Figure 13. Maximum internal heat energy for different nanoparticle concentrations at 100 mm gap
distance.

Table 1. Maximum temperature and maximum internal heat energy of MONF/N-GS samples and
EONF/CCTO samples at 100 mm gap distance.

Nanoparticles Concentration (wt%) 0 0.0025 0.005 0.01

Maximum
Temperature (K) × 103

MONF/N-GS 59.8 59 58.1 54.8
EONF/CCTO 52.4 50.5 50 49.5

Maximum internal
energy (J/kg) × 107

MONF/N-GS 12.1 12 11.8 11.1
EONF/CCTO 10.6 10.2 10. 1 10
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5. Physical Mechanisms

The MOCB contacts are completely immersed in the oil. This study aims to investigate
the generated heat during pre-arcing in the making process. The heat is generated due to the
effect of the applied electric field. Accordingly, the oil’s thermal conductivity is considered
a constant value for a certain position of contacts. Around contacts, the high temperatures
produced cause carbonization of the oil molecules to a certain level, then creates small
carbon impurity particles and hydrogen gas that provide a media for arc spread. In some
cases, the produced heat inside the MOCB during the making process can represent a more
severe condition than that of the breaking condition, such as auto-reclosing on an existing
fault.

As presented, all oil samples increased the maximum temperature and internal heat
energy in a range of about 13.5% to 14.5%, with the variation of the gap distance from
150 mm to 100 mm and 100 mm to 50 mm. As shown in the obtained results, the smaller
the gap distance between the arc quenching house and the movable contact, the higher the
thermal stress on the MOCB. This case is presented at the gap distance of 50 mm when the
insulating oil type is base mineral oil. The maximum produced temperature and maximum
internal heat are 68,100 K and 138 × 103 kJ/kg, respectively. This returns to the presence of
a higher electric field on the insulating oil between contacts compared with 100 mm and
150 mm gap distances. The risk of this thermal stress is minimized with the existence of
nanoparticles that improve the thermal properties of the insulating oil. Consequently, the
mitigation of the produced temperature and the generated heat energy inside the MOCB
returns to the high thermal conductivity of the different nanofluids. The higher the thermal
conductivity, the better the coolant effect that decreases the maximum temperature and the
internal energy while increasing the circuit breaker lifetime by keeping it with lower thermal
stress. To further verify this conclusion, many evaluations of the maximum temperature
and the internal energy at 100 mm gap separation have proceeded for many different
insulating oils with different thermal conductivities quoted from references [35–37]. Table 2
presents the different oils considered in these studies and the corresponding computed
maximum temperature and internal energy. When the thermal conductivity of insulating
oil is increased by the presence of the nanomaterials, the temperature and internal energy
will be decreased to provide higher cooling safety for the MOCB components.
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Table 2. Maximum temperature and internal energy for many different Nano-oils.

Sample ID Oil Type Nano Type wt% kc T × 103 U × 107

S1 MO N-GS 0.0025 0.137 59.0 12.0
S2 MO N-GS 0.005 0.1395 58.1 11.8
S3 MO N-GS 0.01 0.1486 54.8 11.1
S4 EO CCTO 0.0025 0.1625 50.5 10.2
S5 EO CCTO 0.005 0.1643 50.0 10.1
S6 EO CCTO 0.01 0.1662 49.5 10.0
S7 MO BN 0.05 0.12075 66.3 13.5
S8 MO BN 0.1 0.1212 66.1 13.4
S9 MO Fe3O4 0.05 0.1204 66.5 13.5
S10 MO Fe3O4 0.1 0.1205 66.5 13.5
S11 EO TiO2 0.005 0.164 50.1 10.2
S12 EO TiO2 0.01 0.166 49.5 10.0
S13 EO TiO2 0.05 0.169 48.8 9.88
S14 EO graphene 0.002 0.225 37.8 7.64
S15 EO graphene 0.004 0.255 33.8 6.84
S16 MO Al2O3 0.5 0.142 57.1 11.6
S17 MO Al2O3 1 0.145 56.0 11.4
S18 MO Al2O3 2 0.151 54.0 11.0
S19 MO Al2O3 4 0.162 50.7 10.3
S20 EO TiO2 0.005 0.164 50.1 10.2
S21 EO TiO2 0.01 0.166 49.5 10.0
S22 EO TiO2 0.05 0.169 48.8 9.88

These improvements in thermal conductivity return to many reasons. These reasons
can be summarized as: (i) Interfacing between the solid nanoparticles and the insulating oil
plays an effective role in the heat conduction process [38]. (ii) Brownian motion, i.e., the
nanoparticles’ random anarchic motion, helps the phonons devolve from one nanoparticle
to another. This motion provides a better heat convection process [39]. (iii) Cluster forma-
tion of nanoparticles leads to direct heat transfer from one molecule to another with low
heat loss to improve the thermal conductivity of nanofluids [40]. Regarding the insulating
oil type, it is seen that the usage of synthetic ester oil is more recommended than mineral
oil. This recommendation returns to not only synthetic ester oil having better thermal
conductivity than mineral oil, but also synthetic ester oil has many other advantages over
mineral oil, including higher flash point, better lubrication, greater moisture tolerance, and
superior oxygen stability [41].

For more clarification of the enhancement of mineral oil thermal conductivity that
improves the temperature distribution and heat energy inside MOCB as simulated above, it
shall be known that when certain types of nanoparticles are dispersed inside the insulating
oil, the thermal conductivity of this oil is improved, due to numerous reasons. Figure 16
clarifies the interface between the nanoparticles and the oil molecules. Before the insertion
of nanoparticles inside the insulating oil, the radius of oil molecules is assumed to be R1,
and, after good dispersion, is R2. Due to the perfect interface, the interface charge depends
on the distribution of nanoparticles’ mobility and the flux of charge carriers [42]. It is
presented that the radius R2 is larger than R1, which produces a higher molecule surface for
a better heat conduction process. This behavior explains the enhancement of the thermal
characteristics of mineral oil as obtained in the results above. Moreover, this enhancement
can be attenuated to the Brownian motion of nanoparticles within insulating oil subjected
to a steady-state temperature gradient. This phenomenon is known as thermophoresis [43].
As a result of the thermophoresis effect, the nanoparticles drifted from the hot regions
to the cold regions, dissipating the heat, and thereby enhancing the internal heat energy
and temperature distribution inside MOCB, as presented in Figure 17. The thermophore-
sis procedure improves the temperature distribution and heat energy inside the oil as
well. For example, as shown in Table 2, sample S9 has a lower thermal conductivity of
0.1204 W/(m·K) and achieved a maximum temperature of 66.5 × 103 K and heat energy of
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13.5 × 107 J/kg. However, due to the higher thermophoresis that provides higher thermal
conductivity with 0.255 W/(m·K) to the oil sample, S15 achieved a maximum temperature
of 33.8 × 103 K and heat energy of 6.84 × 107 J/kg, i.e., the higher the insulating oil with a
high thermophoresis, the higher thermal conductivity with lower thermal stresses on the
oil molecules that provide better performance and superior lifetime for MOCB.

Nanomaterials 2023, 13, x FOR PEER REVIEW 17 of 20 
 

 

thereby enhancing the internal heat energy and temperature distribution inside MOCB, 
as presented in Figure 17. The thermophoresis procedure improves the temperature 
distribution and heat energy inside the oil as well. For example, as shown in Table 2, 
sample S9 has a lower thermal conductivity of 0.1204 W/(m·K) and achieved a maximum 
temperature of 66.5 × 103 K and heat energy of 13.5 × 107 J/kg. However, due to the higher 
thermophoresis that provides higher thermal conductivity with 0.255 W/(m·K) to the oil 
sample, S15 achieved a maximum temperature of 33.8 × 103 K and heat energy of 6.84 × 
107 J/kg, i.e., the higher the insulating oil with a high thermophoresis, the higher thermal 
conductivity with lower thermal stresses on the oil molecules that provide better 
performance and superior lifetime for MOCB. 

 
Figure 16. Dispersion and interface of nanoparticles with insulating oil molecules. 

 
Figure 17. Thermophoresis procedure inside insulating oil-based nanoparticles. 

6. Conclusions 
In this work, 66 kV MOCB is modeled by COMSOL Multiphysics software. A 

Multiphysics mode of the interface between the electrical potential and the heat transfer 
in fluids is used to evaluate the internal temperature and the internally generated heat 
energy inside the MOCB during the making process of its contacts at different positions 
of the movable contact. The results showed that the worst thermal stresses that appear on 
the MOCB are at a 50 mm gap distance between the arc quenching house and the movable 
contact. At this gap distance, in the case of MONF, with the increase in N-GS wt%, the 

Figure 16. Dispersion and interface of nanoparticles with insulating oil molecules.

Nanomaterials 2023, 13, x FOR PEER REVIEW 17 of 20 
 

 

thereby enhancing the internal heat energy and temperature distribution inside MOCB, 
as presented in Figure 17. The thermophoresis procedure improves the temperature 
distribution and heat energy inside the oil as well. For example, as shown in Table 2, 
sample S9 has a lower thermal conductivity of 0.1204 W/(m·K) and achieved a maximum 
temperature of 66.5 × 103 K and heat energy of 13.5 × 107 J/kg. However, due to the higher 
thermophoresis that provides higher thermal conductivity with 0.255 W/(m·K) to the oil 
sample, S15 achieved a maximum temperature of 33.8 × 103 K and heat energy of 6.84 × 
107 J/kg, i.e., the higher the insulating oil with a high thermophoresis, the higher thermal 
conductivity with lower thermal stresses on the oil molecules that provide better 
performance and superior lifetime for MOCB. 

 
Figure 16. Dispersion and interface of nanoparticles with insulating oil molecules. 

 
Figure 17. Thermophoresis procedure inside insulating oil-based nanoparticles. 

6. Conclusions 
In this work, 66 kV MOCB is modeled by COMSOL Multiphysics software. A 

Multiphysics mode of the interface between the electrical potential and the heat transfer 
in fluids is used to evaluate the internal temperature and the internally generated heat 
energy inside the MOCB during the making process of its contacts at different positions 
of the movable contact. The results showed that the worst thermal stresses that appear on 
the MOCB are at a 50 mm gap distance between the arc quenching house and the movable 
contact. At this gap distance, in the case of MONF, with the increase in N-GS wt%, the 

Figure 17. Thermophoresis procedure inside insulating oil-based nanoparticles.

6. Conclusions

In this work, 66 kV MOCB is modeled by COMSOL Multiphysics software. A Multi-
physics mode of the interface between the electrical potential and the heat transfer in fluids
is used to evaluate the internal temperature and the internally generated heat energy inside
the MOCB during the making process of its contacts at different positions of the movable
contact. The results showed that the worst thermal stresses that appear on the MOCB are
at a 50 mm gap distance between the arc quenching house and the movable contact. At this
gap distance, in the case of MONF, with the increase in N-GS wt%, the internal temperature
and the generated heat energy inside MOCB decreased by about 8.4% and 8%, respectively.
While, in the case of EONF, with the increase in CCTO wt%, the internal temperature and
the generated heat energy inside MOCB decreased by about 5.5% and 5.8%, respectively.
The thermal stress on MOCB is minimized by 17.5% by comparing the base mineral oil and
the sample of EONF/CCTO at 0.01 wt%. This improvement of thermal properties returns
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to the interface between the solid nanoparticles and the insulating oil, the random anarchic
motion of the nanoparticles, and their cluster formation.
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Nomenclatures

MOCB Minimum oil circuit breaker
SF6 Sulfur hexafluoride
Al2O3 Aluminum oxide (alumina)
CCTO Calcium copper titanium oxide (CaCu3Ti4O12)
ZnO Zinc oxide
DDF Dielectric dissipation factor
SiO2 Silicon dioxide
TiO2 Titanium dioxide
MCB Miniature circuit breaker
MCCB Molded case circuit breaker
wt% Weight percentages
N-GS Amorphous graphene nanosheets
MONF Mineral oil nanofluid samples
EONF Synthetic ester oil nanofluid samples
MO Mineral oil
EO Ester oil
Fe3O4 Iron oxide
R1 Radius of oil molecules
R2 Radius of oil molecules after good dispersion
J Current density
σ Electrical conductivity
Je Externally generated current density
E Electric field strength
V Electrical potential
Vo Boundary electrical potential of the fixed contact
Q Heating source
ρ Fluid density
Cp Fluid heat capacity at constant pressure
kc Fluid thermal conductivity
u Fluid velocity field
T Dependent variable temperature in the model
Qe Heating source term
∆T Temperature difference between oil molecules
U Internal energy inside MOCB
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